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ABSTRACT 
This article discusses mathematical foundations of local estimations of the Monte Carlo method. The basic 
algorithm of visualization of the 3D scenes based on local estimations, which are an analog of the famous algorithm 
Instant Radiosity, is considered. 
An algorithm for radiance object view-independent calculation based on local estimations of Monte Carlo method 
is shown 
Additionally, questions of representation of radiance object as spherical harmonics expansion in each 
computational point are analyzed. The assumption of possible direct calculation of radiance object coefficients of 
expansion in spherical harmonics by Monte Carlo method is brought in, and problems are identified. 

Keywords 
Radiosity, instant radiosity, global illumination, local estimations, Monte-Carlo, spherical harmonics, view-
independent global illumination. 

1. INTRODUCTION 
Lighting systems simulation and visualization of 3D 
scenes in computer graphics are based on well-known 
global lighting equation [Kajiya J. T. 1986]. 

 0
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where ˆ( , )L r l  is the radiance at the point r in the 
direction l̂ , ˆ ˆ( ; , )ʹσ r l l  is the bidirectional scattering 
distribution function (reflectance or transmittance), 
0L   is the radiance of the direct radiation straight near 

the sources, N̂  is the normal at the point r to the 
surface of the scene. 
The spatial angular distribution of radiance can be 
calculated on the global illumination ground. It will 
allow determining light qualitative characteristics 

(glare, discomfort), which will enable to calculate 
lighting systems for a specified quality of 
illumination. The spatial angular radiance distribution 
calculating algorithm is also the basis for the 
visualization of 3D scenes. Today, the radiosity is 
used for the lighting systems simulation. This 
algorithm is based on the finite element method of 
radiosity equation. [Goral et al. 1984] [Moon P. 1940]. 
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where M(r) is the radiance at the surface point r, M0(r) 
is radiancy at the point r, received straight from the 
light source, ( , )ʹΘ r r  is the visibility function of an 
element 2d ʹr  from point r, 
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form-factor, ˆ ( )N r  is a normal at the point r to the 
scene surface. 
Should be noted that the radiosity equation has two 
analytic solutions. First is a well-known photometric 
sphere. Second is the Sobolev problem: two parallel 
infinite diffuse planes and isotropic point source in 
between [Budak V., Zheltov V. 2014]. 
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Radiosity method on which the lighting systems 
modeling programs DIALux and Reluxe are based 
fails to take account of the reflection from non-diffuse 
surfaces. It markedly affects the determination 
accuracy of radiance spatial angular distribution. 
Recently an interesting algorithm of instant radiosity 
was introduced [Keller A. 1997], which is a kind of 
local estimation algorithms of Monte Carlo method 
[Kalos M. 1963]. However, the phenomenological 
approach used for derivation makes the algorithm 
difficult to use in the general case. We undertook the 
complete proof of strict local assessment algorithms 
based on the global illumination equation. 
In the article, we consider local and double local 
estimations of the Monte Carlo method for the global 
illumination equation. Algorithm based on the local 
estimations allows modeling the radiance of a scene 
surface point in a given direction. Also, basing on the 
local estimations, we proposed an algorithm of view-
independent determination of the radiance angular 
distribution on the scene surfaces. The algorithm has 
obvious advantages over the radiosity method for 
integrating diffusely directed reflection model. 

2. GLOBAL ILLUMINATION 
EQUATION 
From the integral equation for the solid angle, one can 
go to the well-known integral equation of Fredholm 
second kind on surfaces 
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One can construct an algorithm based on (3) for its 
solution by Monte Carlo method. However, 
wandering along the surfaces Σ of the scene 
visualization is not a trivial task. Conventional scheme 
of wandering of the Monte Carlo method is 
constructed in space, which requires the integral to 
integration over the volume. 
Integral over the volume 

 23 ˆ ,d r dr dʹ ʹ ʹ ʹ= −r r l   
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For integration over dr′ we will use equivalent 
transformation with usage δ-function properties 
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where ξ0 is a solution of the surface Σ equation 
Π(r)=0: 0

ˆ( ) 0ʹΠ − ξ =r l . 

The surface equation can be included directly in (5) 
because the ratios 

 0 0ʹξ − − =r r  and ˆ( ) 0ʹ ʹΠ − − =r r r l   (6) 

are equivalent. 
At that, it is important to consider the δ -function 
properties. 
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Accordingly, we will get for global illumination 
equation 
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where the new geometric factor 
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Should be noted that equation (8) is derived for the 
radiance of a point on the surface Σ. However, light 
qualitative characteristics (glare, discomfort) are 
indissolubly related to observer: the radiance should 
be determined by some point in space. Formally, for 
the 3D visualization the radiance on the camera in 
space is also determined. Let us consider the equation 
about an arbitrary point in space. 

The radiance angular distribution ˆ( , )LΣ r l  on a closed 
surface Σ is defined by the equation Π(r) = 0. It is 
required to determine the distribution of radiance in an 
arbitrary point r in volume V limited by the surface Σ. 
The volume is filled with a completely transparent 
medium. 
By the solution of the radiative transfer equation for a 
transparent medium, radiance along the ray does not 
change. Therefore, the radiance of the point r in the 
direction l̂  is equal to the surface at the point of 
intersection of the surface with a ray from a point r at 
the direction l̂ : 



 ˆ ˆ ˆ( , ) ( , )L LΣ= − ξr l r l l ,  (10) 

where ξ – root of the equation 

 ˆ( ) 0Π −ξ =r l   (11) 

The last correlations can be made user-friendlier 
analytically when properties of δ-function are used: 
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Combining the above expression for scene surface 
radiance (8) and radiance for a point in space (12), we 
can write the final expression 

 0
ˆ ˆ( , ) ( , )L LΣ Σ= +r l r l  

 01 1 2 1 2
1 ˆ ˆ ˆ( , ) ( ; , ) ( , )C L GΣ ʹ ʹ+ σ ×
π ∫ r l r l l r r  

 3 3
2 1 2
ˆ( ( ))d rd r×δ Π − −r r r l  , (13) 

where point Σr  corresponds to the point of intersection 
of the camera sight line with surface Σ. 
Thus, the last equation describes the radiance in any 
point of space. 
 

3. LOCAL ESTIMATIONS 
Local estimates were formulated in atomic physics 
[Kalos M.H. 1963] and continued its development in 
the optics of the atmosphere and ocean when solving 
the radiation transport equation [Marchuk G.I. 1980]. 
Note that global illumination equation is an 
implication of the radiative transfer equation in a 
vacuum. Let’s consider local estimations for global 
illumination equation. 

Local Estimation 
The solution (8) can be shown as Neumann series 
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All terms of the series - definite integrals, which will 
be calculated by the Monte Carlo 
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Combining the sums into one 
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The last expression can be interpreted as a Markov 
chain wandering ray with the contribution by the 
kernel 
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Similar expressions were presented in [Budak et al. 
2015.] As a result of the construction of the Markov 
chain, we can evaluate the radiance at a given point in 
a given direction on the scene surface. Such estimation 
may be called local estimation of Monte Carlo. 
Similarly to the estimation, made for the transport 
equation in atmospheric optics [Marchuk G.I. 1980]. 
Thus, local estimation allows calculating surface 
radiance at a given scene point in a given direction. 
Let’s consider the algorithm for radiance calculation 
with the local estimates of Monte Carlo. Accept that 
we have some 3D scene. We fix points and the 
directions on the surface at which we want to 
determine the radiance. 

 
Figure 2: Algorithm scheme of radiance 

evaluation by local estimation 
Let us cast the ray from the source. The most efficient 
way to select a ray is an importance sampling, but any 
other known samples for Monte Carlo methods can be 
used. This ray will receive the weight corresponding 
to the radiance. Determine the point of intersection of 



the ray with a scene element. Then we can evaluate the 
equation (8) kernel (17) for each of the test points and 
calculate directly reflected radiance in the test point 
taking into account its reflection coefficient in the test 
direction. Then, casting a new ray, considering 
reflectance coefficient. Its weight decreases. The 
process continues iteratively until the ray’s weight is 
below the threshold or until it leaves the scene. Then 
again we take a new ray from the source. When 
statistics is accumulated, averaged and normalized, we 
will get the radiance directly at predetermined points 
in a given direction. Also, should be noted that the 
algorithm can be implemented in "Russian roulette" 
principle. Method is outlined in Figure 2. 

Double Local Estimation 
Let’s take a look at the local estimation algorithm 
construction to determine the radiance of a given point 
in space. In equation (13) appears an additional δ-
function 2

ˆ( ( ))δ Π − −r r r l which depends on the 

direction l̂ . It makes direct modeling impossible. It is 
clearly seen in the graphic interpretation in Figure 3. 
Suppose we have a given point r in space and a 
direction l̂  in which we want to determine the 
radiance. We begin to build a Markov chain. As it seen 
in Figure 3, it is impossible to get from the chain point 
in test direction at the test point. To solve the problem 
we fix an additional node - the point on the surface - 
and do calculations through it. This approach is called 
a double local estimation [Marchuk GI 1980]. 

 
Figure 3: Geometric description of the 

impossibility of radiance modeling direct in the 
spatial point 

Figure 4: Scheme of scenes three-dimensional 
visualization construction 

The further algorithm will be no different from the 
local estimation. 

Figure 5: Scene rendering by one ray on one node of 
Markov chain 

On Figure 5 presented the rendering of the 3D scene 
on one node of the Markov chain. In fact, even on one 
node, we get all the images at once, taking into account 
multiple reflections. Certainly, it is not accurate. The 
figure shows an image of the scene Figure 6 
considering a second node of the Markov chain for the 
same ray. After drawing a large number of rays, we 
can get the final image shown in Figure 7. 



Figure 6: Scene rendering by one ray on two nodes of 
Markov chain 

Figure 7: Scene rendering by 1000 rays on average five 
nodes of Markov chain  

Local Estimations and Instant Radiosity 
Local estimations of Monte Carlo were proposed for 
the first time in phenomenological approach in the 
work of [Keller A. 1997] and were called Instant 
Radiosity. 
Should be noted that the algorithm described in 
[Keller A. 1997] is different from the one proposed in 
this article and based on the local estimations. The 
author divides the process into two stages - forming 
the virtual light sources and a calculation of their 
contribution. From our point of view, the construction 
of Markov chains and calculation of its nodes 
contribution are closely interrelated. Should be noted 
that analysis of instant radiosity method in [Pharr M., 
Humphreys G. 2010] is based on a similar processes 
separation approach. 
In the approach wet put forth in our work, these 

processes are not divided. Because of that, we can see 
the whole image at any time. In other words, we can 
get a complete image at once even by one ray of 
Markov chain. 
The geometric factor kernel (17) of global 

illumination contains a well-known feature 3

1
( )ʹ−r r

 

that leads to local estimation infinite dispersion 
[Kollig. T., Keller A. 2004]. There are two algorithms 
for its elimination: with proposed equation kernel 
restriction and further solutions refinement by 
integration within this volume; or with integration by 
a small area around the observation point in which 
averaging of results will take place [Kalos MH 1963]. 
4. VIEW-INDEPENDENT LOCAL 
ESTIMATION 
Radiosity method is not widespread in computer 
graphics. Nevertheless, it found its application in 
lighting design systems. 
Currently, the radiosity method is used in two main 
software products for lighting systems design, DIAlux 
and Relux. The main advantage of the method is that 
it allows calculating of global illumination without 
camera position - a view-independent calculation. 
However, it uses a diffuse reflection model, which 
cannot describe real materials. Moreover, the 
calculated illumination distribution is not a 
characteristic perceived by the eye. 
Based on the described local estimations of Monte 
Carlo method, we can build a new algorithm for 
calculating global illumination without camera 
position and with any reflection model. 

Algorithm 
As in the case of radiosity, the calculations will be 
made on the mesh. This mesh can be both simple 
static, formed before the calculations, based on simple 
criteria, or dynamically generated directly during the 
computation. Should be noted that according to the 
circumstantial evidence we assume that DIAlux uses 
static mesh. At the same time, our mesh will differ 
significantly from one used in radiosity method. In the 
radiosity method, the radiance is averaged by the mesh 
element. In our case, we can directly calculate the 
radiance at a given point in a fixed direction and can 
perform calculations on the mesh nodes. 
For simplicity, we will use a static mesh. Suppose we 
have some initial scene. We divide it into smaller 
mesh nodes and define a uniform step zenith θ and 
azimuthal angle φ direction by the normally oriented 
hemisphere. These are directions at fixed points in 
which we calculate the radiance ˆ( , )L r l . 



 
Figure 9: Definition of calculation points and directions 

of the view-independent calculation 
The further algorithm will be no different from the 
local estimation discussed earlier. After calculation 
using the local estimation, we will get the radiance 
values at the mesh nodes in the set of directions. 
To draw an analogy with radiosity method, further, 
when doing final image collection or analyzing 
illumination in lighting calculations, we will be 
interested in the radiance of arbitrary points on the 
surface. However, while the radiance value in 
radiosity method does not depend on the position of 
the viewpoint (camera), in our case the radiance will 
depend on it. 
To determine the radiance at any point of the element, 
we need first to find the radiance at the vertexes of a 
triangular mesh element in the direction of the 
observer. It can be done by approximating the radiance 
calculated in directions distributed over a hemisphere. 
Then we can calculate the radiance at a given point 
within the triangular element through barycentric 
coordinates. 
Obviously, the accuracy will directly depend on the 
size of scene partition element and the number of 
directions in which the radiance will be calculated. 
The problem of choosing the number of directions for 
calculations is beyond the scope of this study. 
However, our preliminary studies show that, for 
example, to the Phong model in real scenes, the higher 
the degree of the cosine, the greater the number of 
directions necessary to describe that. 
Figures 10 and 11 show an example of view 
independent calculation of the Sobolev problem scene 
with rectangle downlight. The scene surfaces have 
Phong reflectance with the power of cosine equals 16. 

Figure 10: The Sobolev problem scene view-
independent rendering 

Figure 11: The Sobolev problem scene view-independent 
rendering  

Using spherical harmonics approximation 
As described above, when analyzing the obtained 
results we have a problem of radiance approximating 
at a point in the direction. We suggest a well-known 
expansion by spherical functions for this. To do so, we 
can expand the radiance at each point by spherical 
harmonics 
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As a result, for each vertex of the mesh after the 
calculation, we will store expansion coefficients 
( )m

nA r  and ( )m
nB r instead of radiance by the set of 

generated directions ˆ( , )L r l . Therefore, we can also 
determine the radiance in the desired direction l̂ based 
on these coefficients. According to our preliminary 
study, this can significantly reduce the amount of 
stored information. 
Also, should be noted that for the greater efficiency of 
the algorithm of directions at the zenith angle θ in the 
formation of directions mesh at the point it is better to 
choose in zeros of the Legendre polynomials. It will 
further on when determining expansion coefficients 
by integrating allow using the Gaussian quadrature, 
which gives the exact value by integration. 
An important fact is that the loss of "energy" does not 
depend on spherical harmonics series terms number. 
Each next following term clarifies the solution.  



Radiance object expansion by spherical harmonics 
also essential from the lighting technology science 
perspective, because we can see that some members of 
the series have a rigorous physical interpretation, for 
example, the coefficient 0

0 ( )A r  will be the same as 
scalar irradiance - the radiance integral over the solid 
angle since 0

0 ( , ) 1Y θ ϕ = . Coefficient 0
1 ( )A r  - as light 

vector module because 0
1 ( , ) cosY θ ϕ = θ . 

Way to increase Spherical Harmonics 
Transformation (SHT) algorithm 
performance 
Reducing the amount of information stored in the 
brightness distribution at the points of the scene is can 
be achieved by introduction of an additional algorithm 
(SHT), which certainly makes a negative contribution 
to the performance of the whole algorithm. Taking 
into account the actual for today resolutions, it 
becomes obvious that the cyclical structure of SHT 
procedure imposes the requirement for the high 
performance of this algorithm. 
It is clear from the definition that integration by 
volume is required to expand a function in a series of 
spherical harmonics. However, one may notice that 
the integral over the azimuthal angle φ (the sum over 
n in (19)) is the Fourier series. It is known that there is 
an effective numerical method, called the Fast Fourier 
Transform (FFT) for the Fourier transform procedure. 
Thus, from the algorithmic point of view, the double 
integral is reduced to the single on ϑ, and inner integral 
can be calculated using the FFT [Martin J. 
Mohlenkamp 1999]. 
One property of associated Legendre polynomials 
(cos )m

nY ϕ  is that it is either even or odd across φ=π/2 
as n-m is even or odd. The use of equalities also 
reduces computation time by a factor of two [Martin 
J. Mohlenkamp 1999]. 
Other important factors affecting performance are the 
calculation of (cos )m

nY ϕ and the step of sampling, 
which will affect the speed of calculation of the 
integral. Taking into account specific of our task 
iterative calculation of the associated Legendre 
polynomials seems expensive. However, we guess 
that any radiance object should fit well into the only 
single matrix of angles sampling, which enables us to 
calculate polynomials in advance. We guess that 
sampling rate 2n should be sufficient.  

Spherical Harmonics Local Estimation 
One of the problems of radiosity method is a rather 
large consumption of memory for storing the 
information on the mesh. In our method of View-
Independent local estimation, this amount also 
increases by some directions for each node. As 
described above when using radiance decomposition 

by spherical harmonics we can reduce the amount of 
stored information. Thus, if we look for a solution 
directly in the spherical functions, we can immediately 
calculate the expansion coefficients for the given 
points. In this case, the expression (20) can be directly 
estimated by Monte-Carlo method already on one 
node, and then (15) can be written as 
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Thus, in the spherical harmonics local estimation 
algorithm we do not fix the directions at the vertexes 
of the mesh, but on each node of the Markov chain, we 
determine a random direction of reflection for each 
vertex and calculate the expansion coefficients with 
one radiance value. The statistics are collected directly 
in the expansion coefficients ( )m

nA r  and ( )m
nB r . 

5. CONCLUSION AND FUTURE 
WORK 
Local estimation of the Monte Carlo method allows 
calculating the radiance of a given point on the surface 
or in space in a particular direction. Obtained 
expressions show us the connection between Instant 
Radiosity method and local estimation, harmonically 
complementing the already known method. 
Local estimations allow obtaining the spatially 
angular distribution of radiance, and view-
independent simulation algorithm of allocation allows 
to get to a new level of illumination quality analysis. 
Avoiding reflections diffuse model used in lighting 
simulation nowadays is a necessary stage in the 
transition from designing of lighting systems with 
defined quantitative characteristics to the simulation 
of lighting systems with specified quality 
characteristics. 
The work still has numerous unsolved issues. In the 
future, our attention will be paid to: 

• distinctive features in the core of the global 
illumination equation; 

• finding a solution directly in spherical 
functions decomposition coefficients; 

performance issues and as the ultimate goal - the 
quality of lighting. 
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